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Model of spatiotemporal dynamics of stick-slip motion
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We propose a model of spatiotemporal dynamics that, in contrast to many earthquake models,
does not contain a velocity-weakening frictional force. Dissipation in this model occurs only through
viscous forces acting in the presence of a nondissipative random potential. Both small localized and
large delocalized events are observed. The scaling behavior of the event probability distribution
is found to be nonuniversal and distinct from that found in earthquake models. The system loses
instability as the strength of the pulling spring becomes large enough. It also shows transitions
from behavior exhibiting a wide range of magnitudes of slipping events to showing a narrow range
scale in which only large events occur for a certain range of parameters. Effects of varying system
size, boundary conditions, and pulling speed were investigated. Most of our numerical results are
in qualitative agreement with the rubber-sheet experiments of Vallette and Gollub [Phys. Rev. E

47, 820 (1993)).

PACS number(s): 05.40.+j, 91.30.Dk, 05.45.4b, 62.20.Mk

I. INTRODUCTION

The dynamics of slipping has been a topic of both
theoretical and experimental interest in recent years [1-
6], partly due to its relationship to the concept of self-
organized criticality [7] and partly due to its possible rel-
evance to earthquake dynamics. Slipping events in many
systems are observed to have event sizes spanning a wide
range of magnitudes. In contrast to the situation in equi-
librium statistical mechanics, special values of param-
eters are not necessary in order to observe wide-range
critical fluctuations.

This type of phenomenon has been observed in many
dynamic systems. A simple deterministic block-spring
earthquake model has been proposed by Burridge and
Knopoff [8] and studied extensively by Carlson, Langer,
and co-workers [1,2], who found numerically a universal
power-law distribution for a wide range of magnitudes of
slipping events. Slipping experiments that studied gran-
ite on granite at large normal forces [3], sandpaper on car-
pet [4], and rubber sheet on a glass rod [5] have all shown
behavior in which a large-range scale of slipping events
occurred. The same large-range-scale critical fluctuations
exist in lattice and cellular automata models {7,9,10], and
sandpile systems [11,12].

In many mechanical models of blocks and springs, such
as the Burridge-Knopoff model and its variants [1,13,14],
the most important feature responsible for the stick-slip
dynamics is the presence of a frictional force F'(&) whose
strength becomes weaker as the velocity increases [1],
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where z is the velocity of a block and Fj is a constant.
This nonlinear friction function is the source of the stick-
slip instability. Numerical calculations in Refs. [1] and
[2] indicate that the event probability distributions obey
certain scaling laws. For large dissipation, the probability
P(p) of an event of magnitude p occurring has the form
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with b ~ 0.95 and ¥’ ~ —1, where A is a constant and
uo the crossover magnitude dividing the regions of small
and large events. For small enough dissipation, the event
probability roughly shows a single scaling

P(p) ~ Be ' | (3)

with b =~ 0.35 and B a constant.

Another type of block-spring earthquake model was
recently proposed and studied by Knopoff and co-
workers [14]. In their model the velocity-weakening as-
pect of the frictional force was introduced through the
presence of separate sticking and sliding coefficients of
friction. The coefficient of sticking friction varied ran-
domly from block to block, and a viscous force was also
used.

Vallette and Gollub [5] recently conducted an experi-
ment on the dynamics of slipping and have found some
interesting results. They used a stretched thin rubber
sheet pressed against a long cylindrical glass rod, and
translated the rod at a constant speed. Digitized optical
measurement of the one-dimensional displacement and
event distributions of the rubber-sheet system showed a
broad distribution of event sizes, similar to the behavior
in earthquake models. There are, however, two major dif-
ferences between results in the rubber-sheet system and
in earthquake models. The friction between the rubber
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sheet and the glass rod was measured and found to be
velocity strengthening instead of velocity weakening as
employed in earthquake models. Also, the scaling behav-
ior for event distribution measured in the rubber-sheet
system did not always agree with the predictions of the
earthquake models; in particular, they found that in con-
trast to earthquake models, the scaling exponent b for
small events decreases as dissipation increases.

Vallette and Gollub’s experiment suggests that there is
an alternative mechanism for stick-slip dynamics. They
argued that the instability in their experimental system
is due to local detachment of the elastic sheet from the
glass rod. The discrepancy between the scaling behavior
measured in the rubber sheet and calculated from earth-
quake models also raises an interesting question: is there
a universal scaling law governing all stick-slip dynamics?
Or is the scaling dependent on the details of the models
considered?

In this paper we propose an alternative one-
dimensional mechanical model and describe some the-
oretical and computer-simulation studies designed to an-
swer the question of scaling universality. The block-
spring model studied in this paper is similar in some re-
spects to previous earthquake models, but differs from
them in its lack of any frictional force term in the equa-
tions of motion. Instead, a random Gaussian potential
that acts on the blocks mimics the hills and valleys of a
rough surface. This nondissipative force is supplemented
by a viscous force that adds the necessary dissipation
to the model. While the model has in common with
Ref. [13] the presence of a stochastic element, it differs
from it and from most previous models in the absence
of any velocity-weakening frictional force. The viscous
force, which is the only nonconservative element in our
model, is of course velocity strengthening. We will cal-
culate the displacement of blocks, their velocities, and
the time distribution of events in order to study spatial
and temporal dynamics, and study the event probability
distribution in order to examine the scaling law. We will
also analyze the dependence of the dynamics on system
size, minimum event size, and pulling speed.

II. THE MODEL

The one-dimensional model we will study is depicted
schematically in Fig. 1. The N blocks of mass m are
connected in a chain by Hookean springs of force constant
s1. Each block is attached to a rigid body moving at
a constant velocity v (the pulling speed) via Hookean
springs of force constant s;. The blocks are pulled on a
fixed rough surface whose interaction with the blocks is
represented by a random Gaussian potential G(z),

k
G(2) = =55 > Ryem =, (4)
l

where the [ are integers, k is the depth parameter of
the potential, and d is the width parameter, and the R;
random numbers between 0 and 1. We have taken the
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FIG. 1. Illustration of the one-dimensional block-spring
model.

equilibrium spacing between two blocks to be unity, and
chose d sufficiently large to make the results independent
of its actual magnitude. The frictional force that was de-
scribed in terms of a macroscopic coefficient of friction in
other models is now replaced by the effects of the random
potential G(z), and so does not appear in our model. All
energy dissipation then occurs solely through a viscous-
force term of the same form as was present in the model
of Burridge and Knopoff [8].
The equations of motion for this model system are

dz:c,- '
’I'n—dt2 = 31(12:'-}-1 —2z; + zi—l) + 32[vt — (2:,' _ ’I,)]
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t=1,2,...,N, (5)
where  describes the strength of the viscous force. The
mass m will be taken as unity in our discussion through-
out this paper. We investigate the effects of the five in-
dependent parameters in Eq. (5): 81, s2, v, k, and v. We
shall assume an initial configuration of blocks of either a
uniform distribution

Ty = ’l:, (6)

or a spatially nonuniform configuration with each block
deviating randomly by a small amount from its equilib-
rium position, so that

z; =i+ (R, — 0.5)6. )

Here R; is a random number in (0,1) and § a small con-
stant, typically 0.1.

Our model (5) differs from that used by Carlson,
Langer, et al. [1,2] in that a random element is intro-
duced into the equations of motion themselves, and does
not arise in a translationally invariant system as a con-
sequence of velocity-weakening friction. The random po-
tential (4) provides an instability mechanism more closely
in accord with microscopic tribological considerations:
a detachment process occurs when some blocks over-
come the potential barriers and start sliding. The linear
velocity-dependent term —«i; allows dissipation of the
kinetic energy that would otherwise accumulate as work
is done by the pulling springs.
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III. NUMERICAL CALCULATIONS

The coupled differential equations (5) were solved nu-
merically by use of the standard Runge-Kutta procedure.
The system size studied was typically N = 50, although
some larger variants with V up to 150 were also examined
to verify that no qualitative change in behavior would be
observed.

The system was always started completely at rest from
the positions described by Eq. (6) or (7). Although the
stick-slip motion is in general not periodic in time, big
slipping events were found to be approximately periodic
in time with period 1/v, as might be expected from the
translational invariance of the chain of blocks. The time
steps used in the numerical procedure were 0.0002 of this
fundamental time unit. We discarded the first 5 x 10°
time steps (about 100 cycles of big events) in order to let
the system reach a steady state, then collected data for
about 107 time steps, or about 2200 loading cycles.

A criterion was set for the smallest slipping that would
be counted as an event. Since the event size is measured
by block displacement, a minimum displacement was de-
fined as the threshold for an event. The size Az, of
this minimum displacement was set arbitrarily as the dis-
tance traveled at twice the pulling speed v in one time
step At,

ATmin = 20AL. (8)

As a check on the appropriateness of this criterion, two
other Az;, were also studied to see their effect on the
scaling behavior of the event probability distribution.

We will calculate various event-related quantities:
event distributions in time, space, and size, and velocities
of blocks in different events. An event can be defined in a
two-dimensional lattice of position and time: if a block at
a given (discrete) time has a displacement greater than
AZmin, that point is marked in the position-time space
to have a slipping point. An event is then a cluster of all
connected slipping points.

The moment M of an event is defined in the same way
as in earthquake models [1],

M= Z Az;, (9)

where 7 is summed over all blocks contained in the event.
The magnitude p of the event is then defined as

p=1InM. (10)

The event probability distribution P(u) is the frequency
of events per unit length of u. We will normalize the
number of events per unit u interval by dividing by the
total number of events in the entire run used to obtain

P(p).

IV. NUMERICAL RESULTS
A. Spatiotemporal dynamics

We observed slipping events of various sizes distributed
over space and time. Figure 2(a) shows the block dis-
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placements z;(t). The parameters used in this figure are
s; = 30, s = 20, k = 350, d = 50, v = 0.015, and
v = 4.0. We see both big events (large slipping involving
a large number of blocks) and small events (events with
small slipping and a small number of blocks), and the
time spent in slipping is much less than the time spent
in loading. One time unit in the figure is 67 time steps.

Figure 2(b) shows another view of the same spatiotem-
poral dynamics. Here we plot equal-time contour lines on
the &;(t)-z;(t) plane, where the cumulative displacement
Z;(t) is as defined in Ref. [5],

&i(t) = vt + zi(t). (11)

The areas where the lines are dense represent sticking,
while the white areas where the lines are widely separated
portray slipping events. Only some of the 50 blocks are
shown in Fig. 2(a), as we have magnified part of the
system to show more clearly the small slipping events.
This behavior appears qualitatively similar to that seen
in Vallette and Gollub’s experiment (Ref. [5]).

The stick-slip dynamics of various event sizes can also
be seen by plotting the velocities of the blocks in position
and time for this same simulation, as shown in Fig. 3.

40 I T T 7 T
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FIG. 2. The model shows a wide range of slipping events.
Shown here is a typical system with parameters s; = 30,
s2 = 20, k = 350, d = 50, v = 0.015, and v = 4.0. (a)
Displacement of blocks as a function of time, (b) equal-time
contour map showing the cumulative displacement &;(t) as a
function of position and time.
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30 35

FIG. 3. In this replotting of the data of Fig. 2, the velocities
of blocks are shown as a function of position and time. Both
localized events with small velocities and big events with large
velocities are seen.

Relatively small velocities with a small number of blocks
involved in each peak represent small localized slipping
events. We note that the pulling speed is v = 0.015, and
that small events have velocities of the order of v. Also
apparent in Fig. 3 are big events involving a large number
of blocks and having velocities greater than the pulling
speed v by up to two orders of magnitude.

The time distribution of events can be clearly seen in
Fig. 4 which displays the size (magnitude p) of events as
a function of time. Even though we impose a minimum
displacement for an event to be noted, the range of mo-
ments of slipping events spans more than three orders of
magnitude. Big events repeat roughly every time interval
1/v, although the sizes are not the same in each cycle.
Small events are less regularly distributed in time and
magnitude in each cycle, but tend to group together in
time in each cycle. There is a relatively long quiet pe-
riod of time after big events, and this is shown as a gap
between two clusters of events. Each cycle thus begins
with quiet creeping motion, and then small events occur,
quickly triggering big events.

= T - 1
0r ‘_' z - _i— = 1
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FIG. 4. Time distribution of events. Slipping events form
clusters in time. There is a long quiet creeping motion after
big events and before the next event cluster.

3943
B. Scaling behavior of the magnitude distribution

We completed a large number of numerical runs in or-
der to study the scaling behavior of the magnitude prob-
ability distribution P(u) of all events. A typical plot of
In P(p) vs p is shown in Fig. 5(a), and is very similar
to the experimental data reported in Ref. [5]. The curve
marked with filled circles in Fig. 5(a) corresponds to a
system with relatively small dissipation, v = 3.0. Other
parameters for this distribution are s; = 60, s; = 20,
k = 250, d = 50, v = 0.015. We refer to this parameter
set as the standard parameter set. For small events the
distribution follows the Gutenberg and Richter law [15]

P(u) = Ae™™, (12)
where A is a constant and the scaling exponent b in this
case is about 1, which agrees with the predictions of
earthquake models [1,2] and with seismological data [15].

FIG. 5. (a) Logarithm of event probability distribution as
a function of magnitude pu. The stronger dissipation (curve
with open circles) flattens the distribution in the small-event
region. Compared are the system with standard parameter
set, 81 = 60, s2 = 20, k'= 250, d = 50, v = 0.015, and v = 3.0
(filled circles), and the system with k¥ = 320 and v = 5.0
(open circles). (b) Scaling of distribution is not changed as
the interblock spring parameter s; is varied. Unlike the case
for all the other parameters, however, different s; changes
crossover magnitude up. All three curves have the same stan-
dard parameters except that s; = 30 for stars, s; = 60 for
filled circles, and s; = 90 for open circles.
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When, however, the dissipation is increased to k = 320
and v = 5.0, but with the other parameters unchanged,
the probability distribution P(y) yields a smaller ex-
ponent b =~ 0.65, as shown by the curve marked with
open circles in Fig. 5(a). This contradicts the earthquake
models’ prediction that weaker dissipation decreases the
exponent b. The flatter probability distribution in our
model in the small-event regime as dissipation is in-
creased indicates that scattered small slipping events are
depressed and less visible and the system’s motion is
dominated by larger, more concentrated slippings. This
type of dependence of motion and probability distribu-
tion on dissipation have been reported in the rubber-
sheet experiment [5]. The effect of large dissipation on
slipping dynamics can also be seen in Fig. 6, the cumu-
lative displacement, which shows large stuck (black) and
slipping (white) areas and little small-slipping region.

We also note in Fig. 5(a) that there is no structural
change of the distribution when dissipation is decreased,
in contrast to the case in earthquake models where the
weak-dissipation distribution reduces to one character-
ized by a single exponent b” [Eq. (3)]. Except for the
cases of very large friction or viscosity, where the small-
event part of the distribution vanishes (see next sec-
tion), the distribution curve in our model always shows
a pattern of decreasing probability in the small-event
region and increasing probability in the large-event re-
gion. The absence of a single-scale distribution was sim-
ilarly observed in the rubber-sheet experiment. We did
not attempt to calculate a unique scaling exponent ' to
fit Eq. (2) in the large-event region, since that part of
the distribution curve is not a good approximation to a
straight line. However, a very rough linear fit of the dis-
tribution curves from o to the peak in the positive p
side gives b’ a value about 1.5 [Fig. 5(b)].

We do observe in our calculations some scaling behav-
ior that agrees with that found in the earthquake models.
The scaling exponent b seems invariant under variation
of the parameter s; that describes the interblock inter-
action. Figure 5(b) shows the probability distributions

FIG. 6. Cumulative displacement for a system with strong
dissipation. Parameters are the same as for the flatter curve
in Fig. 5(a). Few small events are visible, and the system is
predominantly in either the stuck or the large-slipping state.

for three different values of s,, and they all appear to
have the same scaling exponent b. Another common fea-
ture in scaling behavior is the crossover magnitude g
[Eq. (2), Fig. 5(a)] which marks the crossover from the
small-event region scaling to the large-event region scal-
ing, and remains unchanged under variations of all pa-
rameters except si, in the regions we have studied. The
probability distributions in Figs. 5(a), 9, and 10 have
different parameters, but show the same crossover mag-
nitude po = —1. When the interblock interaction pa-
rameter s; is changed, however, po changes. As shown
in Fig. 5(b), the probability distribution with small s,
has a smaller crossover magnitude than that with larger
s1, and the distribution curve is shifted to the small-p
side when s; is decreased. A smaller s; thus has more
small events but fewer large events than does a larger
s1 because the stiffer pulling springs eliminate smaller
slipping events.

To test system size effects, we have also run calcula-
tions on systems with size N = 100 and N = 150. We
obtained the same scaling exponent b for the parameters
used in the smaller system with N = 50. Except for a
greater total event number, no difference was found be-
tween the large and small systems. This indicates that
the self-organized criticality in our model is not an arti-
fact of the finite size. In particular, the rapid decrease
in the probability distribution for events of magnitude
u > 3 does not reflect any limitation imposed by the size
of the system studied. For example, an event in which
each block in a chain of 150 blocks moves by only one
lattice spacing would have an event magnitude of u > 5.
The almost complete absence of such events in our sim-
ulation is a further indication that size effects were not
important.

C. Loss of instability and transition of distribution

The pulling springs s, in our model are an abstraction
of the effects of the shear modulus of the rubber sheet
in Vallette and Gollub’s experiment. Increasing s, re-
duces the relative effectiveness of cooperative motion in
the chain, and hence is equivalent to reducing the width
of rubber sheet in contact with the pulling rod in the
experiment. A loss of instability was observed in the ex-
periment [5] as the width of the sheet was substantially
reduced, and we find the same phenomenon to occur in
our model calculations when the parameter s, is substan-
tially increased. Figure 7 shows one such system. All the
parameters are the same as those in Fig. 5(a) (i.e., the
standard set of parameters) except that s; = 100. In this
case, big events disappear, leaving the event distribution
in a narrow range of event size [Figs. 7(a) and 7(b)]. The
prominent high-velocity large slips are replaced by a quiet
creeping motion with a velocity of the order of the pulling
speed [Fig. 7(c)].

By changing some of the other parameters of our
model, we can also show transition of dynamical motion
to one without small events. This loss of small events
can be induced by increasing either the potential or the
viscosity. Large static friction (large k) prevents some
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small events from occurring since the local stress for these
blocks is not large enough to overcome the high poten-
tial barrier. A stronger dissipation (large ) reduces the
magnitude of small events and makes them undetectable
(smaller than the minimum magnitude for an event). Fig-
ure 8 shows the event probability distribution P(u) for
two cases inside this regime where no small events occur.
For large k (normal ) or large v (normal k) the distri-
bution shows that only large events are formed. If both
k and v are increased the transition occurs at smaller
values than needed for either k or < alone since the two
effects are cumulative.
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FIG. 7. System loses instability when the parameter s; is
sufficiently large. Essentially no events having p > 0 occur
and the motion is dominated by small creeping events with
velocities of the order of the pulling speed. Standard param-
eters except that s; = 100. (a) Probability distribution, (b)
time distribution of events, and (c) velocity as a function of
position and time.
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FIG. 8. Transition of dynamical motion to the regime
where only large-scale events are seen. This transition oc-
curs when either (a) dissipation parameter v or (b) potential
depth parameter k is increased substantially. For curve (a)
v = 7.0 and (b) k = 800. Other parameters are standard.

We notice that there is a large-event cutoff in the event
probability distribution P(u). The cutoff value is mainly
determined by the parameter k. A larger k results in
a larger maximum event size, since more energy is then
stored in the system before it can be released. The effect
of k on the maximum event size can be seen in Fig. 8.
The maximum size is also affected by v and by s,, as
can be seen in Figs. 8 and 5, because these parameters
govern the total number of blocks involved in the largest
events. As was discussed in Sec. IV B, this cutoff is not
an effect of the finite size of the system.

D. Effects of minimum displacement Ax,,;,
and pulling speed v

In a slipping experiment, it is important to exclude
measurement noise from recorded events, so we set the
criterion that a minimum displacement Az ,;, would con-
stitute a measured event. Any displacement (in a given
time interval) smaller than Az, was ignored. In all the
preceding calculations Az, was as defined in Eq. (8).
Any decrease in Az, is expected to extend the prob-
ability distribution curve to the small-magnitude end,
since smaller events are included. To verify that vari-
ation of Az, will not change the essential features of
the event magnitude distribution we plot the distribu-
tions corresponding to three different Az, in Fig. 9. All
three distributions were calculated using the same stan-
dard parameter set but with Az, = 1.5vAt, 2.0vAt,
and 2.5vAt, respectively. A smaller Az, threshold, as
expected, does give a probability function having an ex-
tended distribution in the small-event region. The slight
decrease in the whole distribution curve for a small Az;,
is due to the renormalization of the probability func-
tion P(u) following the increase in the total number of
events. The scaling behavior and the structure of P(u)
are not changed by the change of threshold value Az, .
The crossover magnitude uo is also invariant under this
change. These results confirm that the threshold Az ;,
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FIG. 9. Varying the minimum displacement Azni, does
not change the system’s scaling behavior. All distributions
have the standard parameters, and AZmin = 1.5vAt for
open-circle curve, 2.0vAt for filled-circle curve, and 2.5vAt
for star curve.

is acting as a measurement control quantity, and not as
a system parameter.

The effect of changing the pulling speed is very sim-
ilar to the effect of changing Azm,. Figure 10 com-
pares probability distributions for three different pulling
speeds with all other parameters being standard. They
have the same distribution pattern, scaling behavior, and
crossover magnitude as we have seen in the case of dif-
ferent thresholds Azpni,- At lower pulling speeds, we
see the distribution curve extend further into the small-
magnitude end and a reduction in the small-event re-
gion. These reflect the fact that when the pulling speed
is decreased smaller events are recorded, but also indi-
cate that intermediate-size events increase in probability
as the pulling speed is lowered. The crossover magnitude
is again unchanged for different pulling speeds, as we can
see from Fig. 10.
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FIG. 10. The effect of changing the pulling speed v is sim-
ilar to that of changing the threshold Azmin. While a lower
speed creates additional smaller events, the dynamics of the
system are not changed. For the curve with stars v = 0.005,
the curve with filled circles v = 0.015, and for the curve with
open circles v = 0.03. All other parameters are standard.

B. LIN AND P. L. TAYLOR 49

E. Boundary conditions and initial configuration

In systems in which long-range correlations occur it is
important to verify that surface effects are not playing an
unsuspected role in determining the system dynamics. In
our model we used a chain of blocks and springs in which
the ends were free. To see if these boundary conditions
were causing any effects we performed calculations on
systems with periodic boundary conditions for both N =
50 and N = 100. In contrast to the report in Ref. [1] that
periodic boundary conditions tend to eliminate irregular
motion and produce smooth, periodic solutions, we found
almost identical results from the two kinds of boundary
condition.

For the earthquake models with translational invari-
ance, an irregular initial configuration like Eq. (7) is
needed to produce stochastic slipping events exhibiting
a wide range of magnitudes; otherwise a uniform initial
configuration with every block in its equilibrium posi-
tion will result in periodic solutions that only slowly di-
verge into irregular motion. This is not the case in our
model. The random-depth potential causes uneven mo-
tion among blocks, with blocks at weaker potentials mov-
ing while others remain trapped in their positions. The
independence of the results on the initial configuration
was confirmed by numerical calculations with uniform
initial configurations as in Eq. (6). The insensitivity of
our model to boundary conditions and initial configu-
rations makes it a robust model for studying stick-slip
phenomena.

V. CONCLUSION AND DISCUSSION

We have proposed and studied a one-dimensional me-
chanical model for spatiotemporal dynamics. In contrast
with some block-spring earthquake models, the friction
between the blocks and the surface is not of the velocity-
weakening type. Instead a random Gaussian potential
and velocity-strengthening dissipation term are used to
describe the static friction and viscosity. The model dis-
plays various slipping events with a wide range of mag-
nitudes. These dynamics characteristic of self-organized
criticality have been observed in our calculations for a
wide range of model parameters.

The proposal and study of this model originated in
work on chain pull-out in random copolymers. Its ex-
tension to a more general context was prompted by an
experiment by Vallette and Gollub [5], in which those au-
thors reported measurements whose results differed from
the predictions of block-spring earthquake models. They
noted that in their apparatus the friction was not veloc-
ity weakening but velocity strengthening, and that the
scaling behavior of the event probability distribution did
not always agree with earthquake models’ predictions.
The rubber-sheet system was found to cease its irregular
behavior when the width of the sheet was substantially
decreased. Results calculated from our model agree with
these experimental data, and suggest that this model rep-
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resents a new class of system exhibiting self-organized
behavior. The model also seems to be a robust sys-
tem for self-organized slipping in that the characteristic
spatiotemporal dynamics do not depend on the size of
system, boundary conditions, initial configurations, and
pulling speed, or on the threshold that defines a minimal
event.
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FIG. 2. The model shows a wide range of slipping events.
Shown here is a typical system with parameters s; = 30,
sz = 20, k = 350, d = 50, v = 0.015, and v = 4.0. (a)
Displacement of blocks as a function of time, (b) equal-time
contour map showing the cumulative displacement z;(t) as a
function of position and time.



FIG. 3. In this replotting of the data of Fig. 2, the velocities
of blocks are shown as a function of position and time. Both
localized events with small velocities and big events with large
velocities are seen.



FIG. 6. Cumulative displacement for a system with strong
dissipation. Parameters are the same as for the flatter curve
in Fig. 5(a). Few small events are visible, and the system is
predominantly in either the stuck or the large-slipping state.



2 T T T T T T T T
nye i
a
a4l (@) |
=y .
6} i
InP(u) "
8t 4
9| =
J10 F i
11 1 1 1, 1 1 1 1 1
-5 -4 3 2 1 0 1 2 3 4
H
4 T T T T T T T T T
i ®
9 L 4
1 - -
0t o
H )
Rl - S E z z z
- = £ o z H
g 2 H H £ z E 4
3 - - i
s 7
75 L 1 1 1 L 1 1 1 1

0.10

0.05

0.00

FIG. 7. System loses instability when the parameter s; is
sufficiently large. Essentially no events having g > 0 occur
and the motion is dominated by small creeping events with
velocities of the order of the pulling speed. Standard param-
eters except that s; = 100. (a) Probability distribution, (b)
time distribution of events, and (c) velocity as a function of
position and time.



